

TOPICAL PAST PAPER QUESTIONS WORKBOOK

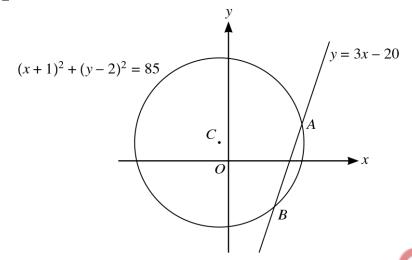
AS & A Level Mathematics (9709) Paper 1
[Pure Mathematics 1]

,

May/June 2015 - February/March 2022

Chapter 3

Coordinate geometry



66. 9709 m22 qp 12 Q: 2A curve has equation $y = x^2 + 2cx + 4$ and a straight line has equation y = 4x + c, where c is a constant. Find the set of values of c for which the curve and line intersect at two distinct points. [5]

67. 9709 m22 qp 12 Q: 6

The circle with equation $(x + 1)^2 + (y - 2)^2 = 85$ and the straight line with equation y = 3x - 20 are shown in the diagram. The line intersects the circle at A and B, and the centre of the circle is at C.

Find, by calculation, the coordinates of A and B .	MI	[4]
	A ^V	
_ 6		
C	<i>F</i>	
120		
••		

an equation of the circle $= 3x - 20$ is a tangent to the c				
	•••••			
			.~~	
		•	9	
	•••••	4		••••••
		10		
	(0		
	0			
	0			••••••
•	••••••	•••••		
	••••••		•••••	••••••

 $68.\ 9709_m21_qp_12\ Q:\ 4$ A line has equation y = 3x + k and a curve has equation $y = x^2 + kx + 6$, where k is a constant. Find the set of values of k for which the line and curve have two distinct points of intersection. [5]

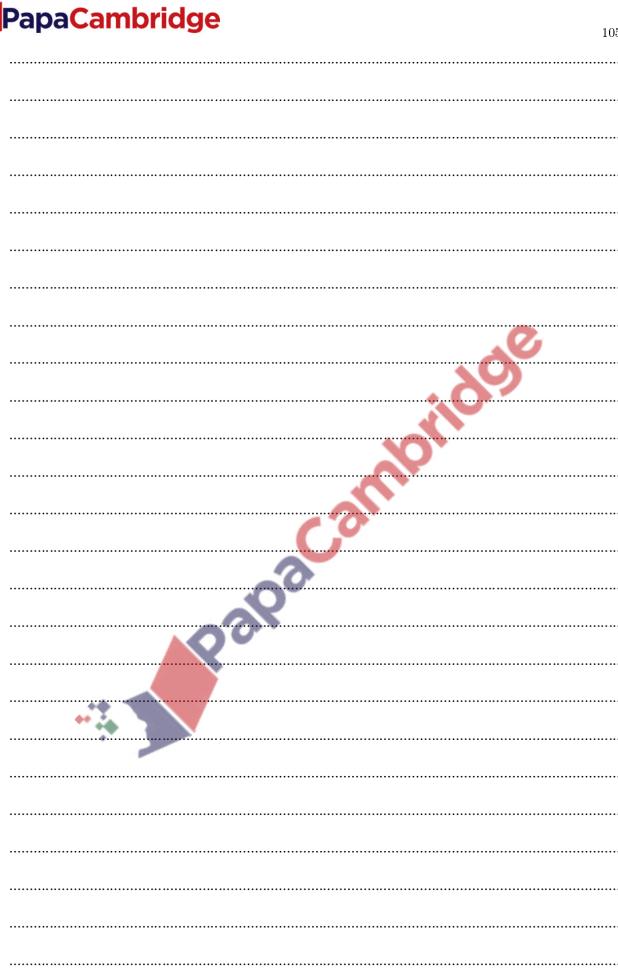
 $69.\ 9709_m21_qp_12\ Q:\ 8$

The points A(7, 1), B(7, 9) and C(1, 9) are on the circumference of a circle.

Find an equation of the circle.	
	*O *
·····	
	F
A 0.00	

1	\cap
- 1	

Pa	paCambridge	103
(b)	Find an equation of the tangent to the circle at B .	[2]
		300
	0000	


70. $9709_s21_qp_11$ Q: 10

The equation	of a	circle	is x^2	$+y^2$	-4x	+ 6y –	- 77	= 0.
--------------	------	--------	----------	--------	-----	--------	------	------

Find	the x -coordinates of the points A and B where the circle intersects the x -axis.	
•••••		
•••••	*07	
•••••		••••••
•••••		
Find	the point of intersection of the tangents to the circle at A and B .	
Find		

1	\cap
- 1	

71. 9709_s21_qp_12 Q: 6
Points A and B have coordinates $(8, 3)$ and (p, q) respectively. The equation of the perpendicular bisector of AB is $y = -2x + 4$.
Find the values of p and q . [4]

 $72.\ 9709_s21_qp_12\ Q:\ 7$

The point A has coordinates $(1, 5)$ and the line l has grad	dient $-\frac{2}{3}$ and passes through A. A circle has
centre $(5, 11)$ and radius $\sqrt{52}$.	

(a)	Show that l is the tangent to the circle at A .	[2]
(b)	Find the equation of the other circle of radius $\sqrt{52}$ for which l is also the tangent at A .	[3]

 $73.\ 9709_s21_qp_13\ Q:\ 3$

A line with equation $y = mx - 6$ is a tangent to the curve with equation $y = x^2 - 4x + 3$.
Find the possible values of the constant m , and the corresponding coordinates of the points at which the line touches the curve. [6]

74. 9709_s21_qp_13 Q: 10

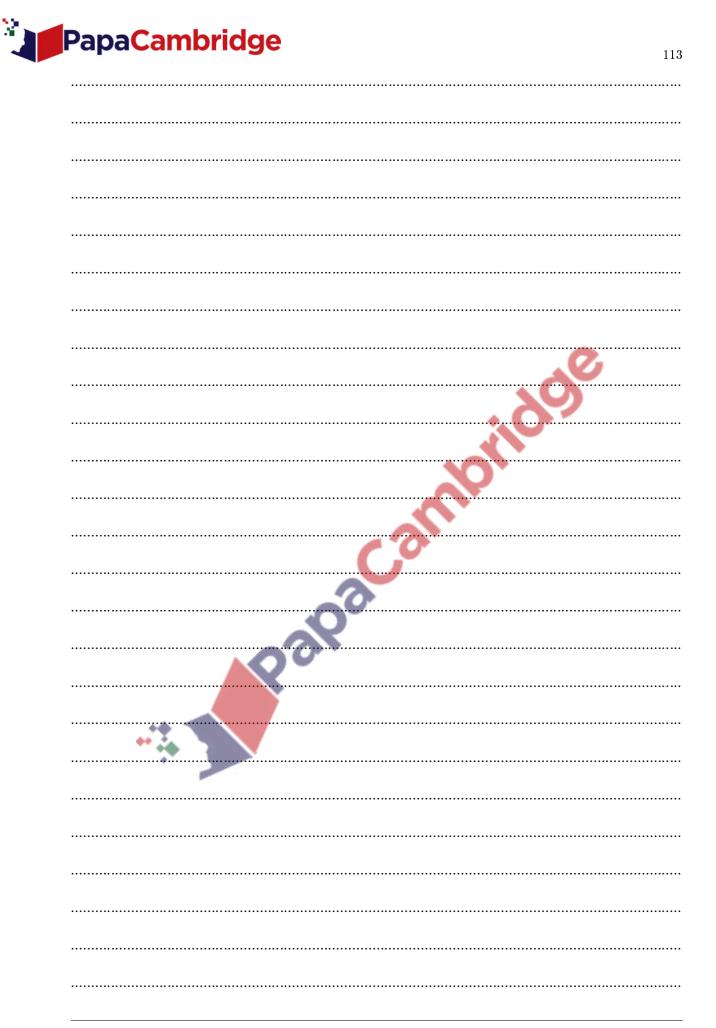
Folins $A(-2, 3)$, $B(3, 0)$ and $C(0, 3)$ he on the circumference of a circle with centre I	Points $A(-2)$	(2, 3), B((3, 0)) and C (6, 5) lie on the circumference of a circle with centre L
---	----------------	------------	--------	-------------	------	--

(a)	Show that angle $ABC = 90^{\circ}$.	[2]
		
(b)	Hence state the coordinates of D .	[1]
(c)	Find an equation of the circle.	[2]

The point E lies on the circumference of the circle such that BE is a diameter.

Find an equation of the tangent to the circle at E .	
	,0
	10)
	10
<u>(70)</u>	

 $75.\ 9709_w21_qp_11\ Q:\ 2$ A curve has equation $y = kx^2 + 2x - k$ and a line has equation y = kx - 2, where k is a constant. Find the set of values of *k* for which the curve and line do not intersect. [5]



76. 9709_w21_qp_11 Q: 7

A circle with centre	(5,	2)	passes	through	the	point	(7	7,	5)).
----------------------	-----	----	--------	---------	-----	-------	----	----	----	----

(a)	Find an equation of the circle.	2]
` '		
		•
		•
		••
		••
		••
		••
		••
		••
		••
		••
The	line $y = 5x - 10$ intersects the circle at A and B.	
THE	The $y = 3x - 10$ intersects the cheic at 71 and B .	
(b)	Find the exact length of the chord AB . [7]	/]
()		_
	~~~~	
		••
		••
	•••	••
		••
		••
		••
		••
		••
		••
		••









77.  $9709_{\mathbf{w}21_{\mathbf{q}p}_{\mathbf{1}3}}$  Q: 9

The line y = 2x + 5 intersects the circle with equation  $x^2 + y^2 = 20$  at A and B.

••••••			•••••	••••••	
•••••					
					<b>7</b> 5
•••••				(0)	
••••••			<b>10</b>		
				<b>/</b> 0	
•••••					
		4	<b>7</b>		
			·		
		0			
•••••	~		•••••	••••••	••••••
		<i>y</i> -			
			•••••	••••••	
•••					
•••••		••••••	•••••	•••••	••••••
••••••			•••••	••••••	



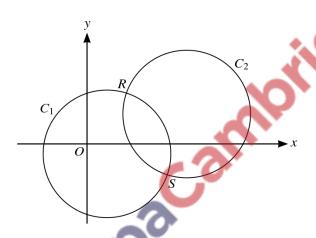


**(b)** 

A straight line through the point (10, 0) with gradient m is a tangent to the circle.

Find the two possible values of $m$ .	[5]
	<u> </u>
	<u> </u>
***	








78.  $9709 _m20 _qp_12 Q: 12$ 

Transfer of a chiefe $C_1$ has the points at $(-3, -3)$ and $(7, 3)$	rcle $C_1$ has end-points at $(-3, -5)$ and $(7, 3)$ .
----------------------------------------------------------------------	--------------------------------------------------------

(a)	Find an equation of the circle $C_1$ .	[3
		••••



The circle  $C_1$  is translated by  $\binom{8}{4}$  to give circle  $C_2$ , as shown in the diagram.

<b>(b)</b>	Find an equation of the circle $C_2$ .	[2]





The two circles intersect at points R and S.

)	Show that the equation of the line RS is $y = -2x + 13$ .
	.0
)	Hence show that the x-coordinates of R and S satisfy the equation $5x^2 - 60x + 159 = 0$ .
	••







79.  $9709_s20_qp_11$  Q: 10

Find the equation of the circle, $C$ , for which $AB$ is a diameter.
10)
**





	Find the equation of the tangent, $T$ , to circle $C$ at the point $B$ .
•	
•	
•	
•	
•	ACA
•	
•	
•	
•	
•	
•	MOU
•	
•	
	***
•	
•	
•	
•	







80. 9709_s20_qp_12 Q: 6

The	equation of a curve is $y = 2x^2 + kx + k - 1$ , where k is a constant.
(a)	Given that the line $y = 2x + 3$ is a tangent to the curve, find the value of $k$ . [3]
It is	now given that $k = 2$ .
<b>(b)</b>	Express the equation of the curve in the form $y = 2(x+a)^2 + b$ , where a and b are constants, and hence state the coordinates of the vertex of the curve. [3]
	A001





 $81.\ 9709_s20_qp_12\ Q:\ 11$ 

The equation of a circle with centre C is $x^2 + y^2 - 8x + 4y - 5 = 0$ .		
(a)	Find the radius of the circle and the coordinates of $C$ .	[3]
		0
		100
	20	····
The	point $P(1, 2)$ lies on the circle.	
<b>(b)</b>	Show that the equation of the tangent to the circle at $P$ is $4y = 3x + 5$ .	[3]







The point Q also lies on the circle and PQ is parallel to the x-axis.

		•••••	
		• • • • • • • • • • • • • • • • • • • •	
Гhе	e tangents to the circle at $P$ and $Q$ meet at $T$ .		
( <b>d</b> )	Find the coordinates of $T$ .		[3]
		•••••	••••
		• • • • • • • • • • • • • • • • • • • •	••••
		•••••	••••
		•••••	••••
			••••
		•••••	
			••••
			••••
			••••
		•••••	••••
		•••••	••••
		•••••	••••
		•••••	••••
		•••••	• • • •
			••••
		•••••	••••
		• • • • • • • • • • • • • • • • • • • •	••••





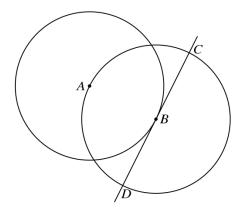
82. 9709_s20_qp_13 Q: 1
Find the set of values of $m$ for which the line with equation $y = mx + 1$ and the curve with equation $y = 3x^2 + 2x + 4$ intersect at two distinct points. [4]
. 29
***







83.  $9709_{ ext{w}}20_{ ext{qp}}11 ext{ Q: } 1$ 


Find the set of values of m for which the line with equation $y = mx - 3$ and the curv $y = 2x^2 + 5$ do not meet.	e with equation
$y = 2x^2 + 5$ do not meet.	[3]
	•••••
-50	
**	





84.  $9709 w20 qp_11 Q: 9$ 

(a)



The diagram shows a circle with centre A passing through the point B. A second circle has centre B and passes through A. The tangent at B to the first circle intersects the second circle at C and D.

The coordinates of A are (-1, 4) and the coordinates of B are (3, 2).

Find the equation of the tangent <i>CBD</i> .	[2]
	•••••
	 •••••
***	•••••







b)	Find an equation of the circle with centre $B$ .	[3]
		N
		<b>9</b>
		<i></i>
٥)	Find by calculation the v goordinates of C and D	[2]
c)	Find, by calculation, the $x$ -coordinates of $C$ and $D$ .	[3]
c)	Find, by calculation, the <i>x</i> -coordinates of <i>C</i> and <i>D</i> .	[3]
<b>c</b> )	Find, by calculation, the <i>x</i> -coordinates of <i>C</i> and <i>D</i> .	[3]
c)	Find, by calculation, the <i>x</i> -coordinates of <i>C</i> and <i>D</i> .	[3]
<b>c</b> )	Find, by calculation, the <i>x</i> -coordinates of <i>C</i> and <i>D</i> .	[3]
<b>c</b> )	Find, by calculation, the <i>x</i> -coordinates of <i>C</i> and <i>D</i> .	[3]
<b>c</b> )	Find, by calculation, the <i>x</i> -coordinates of <i>C</i> and <i>D</i> .	[3]
<b>c</b> )	Find, by calculation, the <i>x</i> -coordinates of <i>C</i> and <i>D</i> .	[3]
<b>c</b> )	Find, by calculation, the <i>x</i> -coordinates of <i>C</i> and <i>D</i> .	[3]
<b>c</b> )	Find, by calculation, the <i>x</i> -coordinates of <i>C</i> and <i>D</i> .	[3]
<b>c</b> )	Find, by calculation, the x-coordinates of C and D.	[3]
<b>c</b> )	Find, by calculation, the <i>x</i> -coordinates of <i>C</i> and <i>D</i> .	[3]
c)	Find, by calculation, the <i>x</i> -coordinates of <i>C</i> and <i>D</i> .	[3]





 $85.\ 9709_w20_qp_12\ Q:\ 3$ 

The equation of a curve is $y = 2x^2 + m(2x + 1)$ , where m is a constant, and the equation of a line is $y = 6x + 4$ .	
Show that, for all values of $m$ , the line intersects the curve at two distinct points. [5]	
*67	







 $86.\ 9709_w20_qp_12\ Q:\ 9$ 

a)	Find the equation of the circle.	[3
		100
		101
	int $C$ is such that $AC$ is a diameter of the circle. Point Show that $DC$ is a tangent to the circle.	t $D$ has coordinates (5, 16).

A circle has centre at the point B(5, 1). The point A(-1, -2) lies on the circle.





**(c)** 

The other tangent from D to the circle touches the circle at E.

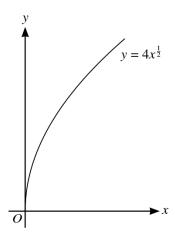
Find the coordinates of $E$ .	[2]
	"
NO.	
**	
*** }	•••••







87. 9709_w20_qp_13 Q: 4


Constant.
Find the set of values of $m$ for which the curve and the line have two distinct points of intersection. [5]

A curve has equation  $y = 3x^2 - 4x + 4$  and a straight line has equation y = mx + m - 1, where m is a





88.  $9709_m19_qp_12$  Q: 10



The diagram shows the curve with equation  $y = 4x^{\frac{1}{2}}$ .

(i)	The straight line with equation $y = x + 3$ intersects the curve at points $A$ and $B$ . Find the length of $AB$ .

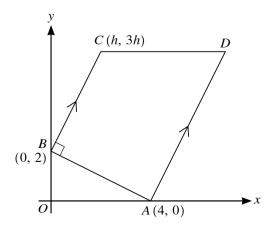






The tangent to the curve	at a point <i>I</i> is parallel t	o $AB$ . Find the coordinates of $T$ .	[:
			• • • • • • • • • • • • • • • • • • • •
			•••••
			•••••
			• • • • • • • • • • • • • • • • • • • •
			<b>O</b>
		λ9	)
Find the coordinates of the	na point of intersection (	of the normal to the curve at $T$ with t	ha lina 1
This the coordinates of the	ic point of intersection of	of the normal to the curve at I with t	[]
		J	
	~~~		
	Q		• • • • • • • • • • • • • • • • • • • •
	·····		
	<u> </u>		
	······································		

89. 9709_s19_qp_11 Q: 2


The line $4y = x + c$, where c is a	constant, is a tangent to	the curve $y^2 = x + 3$ a	t the point P on the
curve.			

(1)	Find the value of c .
	*07
	200
ii)	Find the coordinates of P .

90. 9709_s19_qp_11 Q: 4

The diagram shows a trapezium ABCD in which the coordinates of A, B and C are (4, 0), (0, 2) and (h, 3h) respectively. The lines BC and AD are parallel, angle $ABC = 90^{\circ}$ and CD is parallel to the x-axis.

(i)	Find, by calculation, the value of h . [3]
	C C C C C C C C C C C C C C C C C C C

ii)	Hence find the coordinates of D .
	10 °

91. $9709_s19_qp_12$ Q: 2

Two points A and B have coordinates $(1, 3)$ and $(9, -1)$ respectively. AB intersects the y -axis at the point C . Find the coordinates of C .	The perpendicular bisector of [5]
	.0
-70	
**	

92. 9709_s19_qp_13 Q: 7

The c	oordinates of t	wo points A and	B are $(1, 1)$	3) and (9, −1) respectively	and D is the	mid-point of
AB. A	A point C has c	oordinates (x, y), where x a	and y are vari	ables.		

(i)	State the coordinates of D .	[1]
		•••••
(ii)	It is given that $CD^2 = 20$. Write down an equation relating x and y .	[1]
		9
(iii)	It is given that AC and BC are equal in length. Find an equation relating x and y and she it can be simplified to $y = 2x - 9$.	ow that

	alts from parts (ii) and f.C.			
•••••				•••••
•••••		•••••	•••••	
•••••	••••••	•••••	•••••	
•••••		•••••		
		4		
•••••				
••••••		~(0)	•••••	••••••
•••••				•••••
	7			
**				
·····•				
*				
•••••		•••••		
•••••		•••••	•••••	

93.	9709	w19	αp	11	Q:	3

The line $y = ax + b$ is a tangent to the curve $y = 2x^3 - 5x^2 - 3x + c$ at the point (2, 6). Find the valu of the constants a , b and c .	es 5]
	•••
	•••
	•••
	•••
	•••
	•••

94. 9709_w19_qp_11 Q: 6

A straight line has gradient m and passes through the point $(0, -2)$. Find the which the line is a tangent to the curve $y = x^2 - 2x + 7$ and, for each value of m of the point where the line touches the curve.	[7]
	70
C	

A C N

95. $9709_{y19_{qp}12}$ Q: 2

The point M is the mid-point of the line joining the points $(3, 7)$ and $(-1, 1)$. Find the line through M which is parallel to the line $\frac{x}{3} + \frac{y}{2} = 1$.	[4]
The through M which is paramet to the fine $\frac{1}{3} + \frac{1}{2} = 1$.	נדן
	······································
	0.
	C
	······································
_560	
40	
~°°°	
**	

96. $9709 w19 qp_{12} Q: 9$


Functions f and g are defined by

$$f(x) = 2x^2 + 8x + 1 \quad \text{for } x \in \mathbb{R},$$

$$g(x) = 2x - k \quad \text{for } x \in \mathbb{R},$$

where k is a constant.

) Find the value of k for which the line $y = g(x)$ is a tangent to the curve $y = f(x)$.	[3]
	7
	••••••
	•••••
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	[3]

In the case where $k = -1$, find g	$f^{-1}f(x)$ and solve the equation $g^{-1}f(x) = 0$.	[3
		•••••••
		••••
		
		/
	10	
value of $f(x)$.	$(a)^2 + b$, where a and b are constants, and hence s	[3
	30 ^y	••••••
		•••••
•		

97. 9709_w19_qp_13 Q: 6

Find the set of va	lues of k for which	the line and curve me	eet at two distinct points.	
•••••	•••••	•••••	•••••	
•••••				
•••••		•••••		
••••••				•••••
				0
•••••				
				"
•••••		•••••		
••••••	•••••			•••••
•••••				•••••
		•		
•••••		•••••	•••••	•••••
				•••••
•••••	•••••	•••••		•••••
•••••	• • • • • • • • • • • • • • • • • • • •			•••••

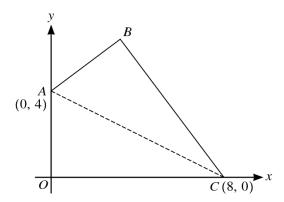
(ii)	For each of two particular values of k , the line is a tangent to the curve. Show that these two tangents meet on the x -axis. [3]

98. $9709_m18_qp_12$ Q: 4

	raight line cuts the positive x-axis at A and the positive y-axis at $B(0, 2)$. Angle $BAO = \frac{1}{6}\pi$ radians, re O is the origin.
(i)	Find the exact value of the x -coordinate of A . [2]
	10
(**)	
(11)	Find the equation of the perpendicular bisector of AB , giving your answer in the form $y = mx + c$, where m is given exactly and c is an integer. [4]
	•

99. 9709_m18_qp_12 Q: 9

A cui	rve has equation $y = \frac{1}{x} + c$ and a line has equation $y = cx - 3$, where c is a constant.	
(i)]	Find the set of values of c for which the curve and the line meet.	[4]
		•••••
		••••••
		•••••
		•••••
		••••••
		••••••
		•••••
		••••••
		•••••
		••••••



(ii)	The line is a tangent to the curve for two particular values of c . For each of these values find the x -coordinate of the point at which the tangent touches the curve. [4]
	407
	000

 $100.\ 9709_s18_qp_11\ Q{:}\ 5$

The diagram shows a kite OABC in which AC is the line of symmetry. The coordinates of A and C are (0, 4) and (8, 0) respectively and O is the origin.

Find the equations of AC and OB .	[4]
	KO'
C.O	
100	

•	
•	
•	
•	
•	. 0
•	
•	
•	
	<u> </u>
•	. 40
•	
	**

•	
•	

101. 9709_s18_qp_11 Q: 9

Functions	f and a a	ra dafinad	for v	⊂ P by
Functions	i and g a	ire delined	100 x	$\in \mathbb{R}$ DV

$$f: x \mapsto \frac{1}{2}x - 2,$$

$$g: x \mapsto 4 + x - \frac{1}{2}x^{2}.$$

(i)	Find the points of intersection of the graphs of $y = f(x)$ and $y = g(x)$.	[3]
(ii)	Find the set of values of x for which $f(x) > g(x)$.	[2]

function h is defined by h: $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \ge k$. Find the smallest value of k for which h has an inverse.		
function h is defined by h : $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		
function h is defined by h : $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		
function h is defined by h : $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		
function h is defined by h : $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		•••••
function h is defined by h: $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		
function h is defined by h : $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		
function h is defined by h : $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		
function h is defined by h : $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		
function h is defined by h : $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		•••••
function h is defined by h : $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		
function h is defined by h : $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		
function h is defined by h : $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		62-
function h is defined by h : $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		40
function h is defined by h: $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		10)
function h is defined by h : $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		
function h is defined by h : $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \geqslant k$.		
function h is defined by h: $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \ge k$.		
		~
Find the smallest value of k for which h has an inverse.		
	function h is defined by h: $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \ge k$.	

 $102.\ 9709_s18_qp_12\ Q:\ 2$

The equation of a curve is $y = x^2 - 6x + k$, where k is a constant.

(i)	Find the set of values of k for which the whole of the curve lies above the x -axis. [2]
	.07
(ii)	Find the value of k for which the line $y + 2x = 7$ is a tangent to the curve. [3]
	•••

103.	9709	s18	qр	12	Q:	8

Points A and B have coordinates (h, h) and $(4h + 6, 5h)$ respectively. The equation of the p bisector of AB is $3x + 2y = k$. Find the values of the constants h and k.	erpendicular [7]
	•••••••
	
<u> </u>	
	••••••
	•••••

CHAPTER 3. COORDINATE GEOMETRY

000

104. 9709_s18_qp_13 Q: 6

The coordinates of points A and B are $(-3k-1, k+3)$ and $(k+3, 3k+5)$ respectively.	tively, where k is a
constant $(k \neq -1)$.	

Find and simplify the gradient of AB , showing that it is independent of k .	[2
	•••••••••
	<u></u>
	•••••••
	•••••
Find and simplify the equation of the perpendicular bisector of AB .	ĺ
That and simplify the equation of the perpendicular bisector of 71b.	ı
	•••••
**	•••••
	•••••
	•••••

CHAPTER 3. COORDINATE GEOMETRY

A () Y
470
4. 1
~~~~





 $105.\ 9709_w18_qp_11\ Q:\ 2$ 

A line has equation $y = x + 1$ and a curve has equation $y = x^2 + bx + 5$ . Find the set of values of the constant b for which the line meets the curve. [4]
_^^
<b>A</b> 0'0'
•







106. 9709_w18_qp_11 Q: 3

Two points $A$ and $B$	have coordinates	(3a, -a) and $(-a)$	-a, 2a) respectively,	where $a$ is a positive
constant.				

	Find the equation of the line through the origin parallel to $AB$ .	
		40
		<u> </u>
(ii)	The length of the line $AB$ is $3\frac{1}{3}$ units. Find the value of $a$ .	[3]
	-50	
	1000	
	4900	





107.  $9709_{w18}_{qp}_{12}$  Q: 10

The e	equation of a curve is $y = 2x + \frac{12}{x}$ and the equation of a line is $y + x = k$ , where k is a constant.
(i) I	Find the set of values of $k$ for which the line does not meet the curve. [3]
In the	e case where $k = 15$ , the curve intersects the line at points A and B.
(ii)	Find the coordinates of $A$ and $B$ . [3]
	***





## CHAPTER 3. COORDINATE GEOMETRY

(iii)	Find the equation of the perpendicular bisector of the line joining $A$ and $B$ . [3]
	**





 $108.\ 9709_w18_qp_13\ \ Q:\ 4$ 

Two points $A$ and $B$ have coordinates $(-1,$	1) and (3,	4) respectively.	The line $BC$ is	perpendicular to
AB and intersects the x-axis at $C$ .				

(i)	Find the equation of $BC$ and the $x$ -coordinate of $C$ .	[4]
	<u></u>	
	000	
<b>(;;</b> )	Find the distance AC giving your ensure correct to 2 decimal places	[21]
(II)	Find the distance $AC$ , giving your answer correct to 3 decimal places.	[2]
	•••	







 $109.\ 9709_w18_qp_13\ \ Q:\ 9$ 

Show that, for all va	lues of $k$ , the cu	rve and the lin	e meet.		[4
					~
					"
			,		
		20			
		Q			
	100	<b>*</b> *			
**		•••••			
***		••••••	•••••	•••••	
		•••••	•••••	•••••	•••••
		•••••			
					•••••
		•••••			•••••

A curve has equation  $y = 2x^2 - 3x + 1$  and a line has equation  $y = kx + k^2$ , where k is a constant.





•	State the value of k for which the line is a tangent to the curve and find the coordinates of the point where the line touches the curve. [4]
	. 29
	70
	**







 $110.\ 9709_s17_qp_12\ Q:\ 2$ 

The point $A$ has coordinates $(-2, 6)$ .	The equation of the perpendicular bisector of the line $AB$ is
2y = 3x + 5.	

(i)	Find the equation of $AB$ .	[3]
		0-
		4.0
		A
(ii)	Find the coordinates of $B$ .	[3]
		2
		•





111. 9709_s17_qp_13_Q: 3
Find the coordinates of the points of intersection of the curve $y = x^{\frac{2}{3}} - 1$ with the curve $y = x^{\frac{1}{3}} + 1$ . [4]







 $112.\ 9709_s17_qp_13\ Q:\ 8$ 

(i)	Find an expression for $b$ in terms of $a$ . [2]
(ii)	B(10, -1) is a third point such that $AP = AB$ . Calculate the coordinates of the possible positions of $P$ .
	***
	**
	***

A(-1, 1) and P(a, b) are two points, where a and b are constants. The gradient of AP is 2.





. 0
<i>_</i>







 $113.\ 9709_w17_qp_11\ \ Q:\ 6$ 

The points A(1, 1) and B(5, 9) lie on the curve  $6y = 5x^2 - 18x + 19$ .

(i)	Show that the equation of the perpendicular bisector of AB is $2y = 13 - x$ .	[4]
	92	
	29	
		•••••
		•••••
		•••••
		•••••





The perpendicular bisector of AB meets the curve at C and D.

(ii)	Find, by calculation, the distance CD, giving your answer in the form $\sqrt{\left(\frac{p}{q}\right)}$ , where p and q are
	integers. $\sqrt{q}$
	***





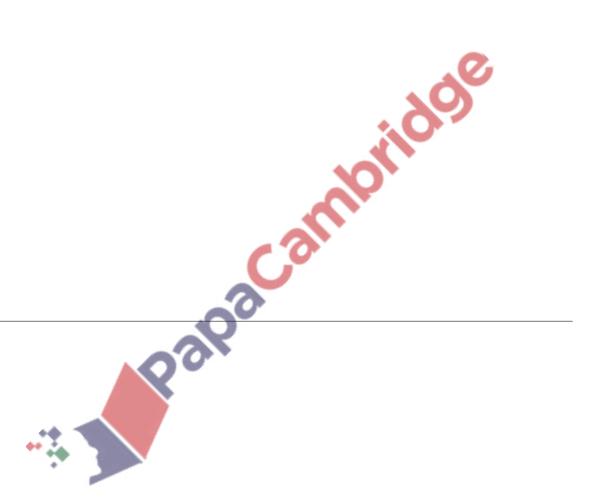


114. 9709_w17_qp_13 Q: 2

Find the set of values of $a$ for which the curve $y = -$ distinct points.	$-\frac{2}{x}$ and the straight line $y = ax + 3a$ meet at two [4]
	.0
	10
	i O
- To	
.0	
400	






 $115.\ 9709_m16_qp_12\ Q{:}\ 5$ 

Two points have coordinates A(5, 7) and B(9, -1).

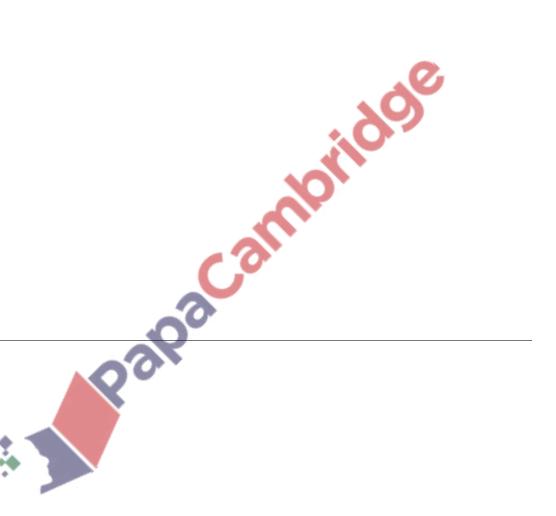
(i) Find the equation of the perpendicular bisector of AB. [3]

The line through C(1, 2) parallel to AB meets the perpendicular bisector of AB at the point X.

(ii) Find, by calculation, the distance BX. [5]







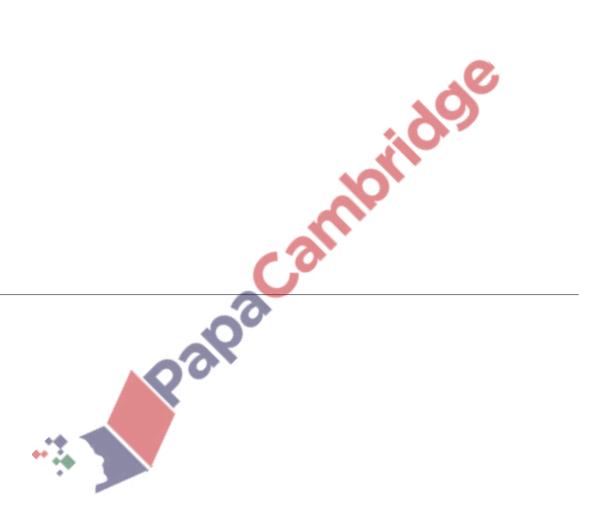

116. 9709_s16_qp_12 Q: 8

Three points have coordinates A(0, 7), B(8, 3) and C(3k, k). Find the value of the constant k for which

(i) C lies on the line that passes through A and B, [4]

(ii) C lies on the perpendicular bisector of AB. [4]








 $117.\ 9709_s16_qp_13\ Q:\ 11$ 

Triangle ABC has vertices at A(-2, -1), B(4, 6) and C(6, -3).

- (i) Show that triangle ABC is isosceles and find the exact area of this triangle. [6]
- (ii) The point D is the point on AB such that CD is perpendicular to AB. Calculate the x-coordinate of D.







118. 9709_w16_qp_11 Q: 4

C is the mid-point of the line joining A(14, -7) to B(-6, 3). The line through C perpendicular to AB crosses the y-axis at D.

(i) Find the equation of the line CD, giving your answer in the form y = mx + c. [4]

(ii) Find the distance AD. [2]







119. 9709_w16_qp_12 Q: 3

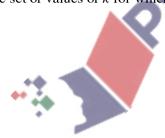
A curve has equation  $y = 2x^2 - 6x + 5$ .

- (i) Find the set of values of x for which y > 13. [3]
- (ii) Find the value of the constant k for which the line y = 2x + k is a tangent to the curve. [3]








 $120.\ 9709_w16_qp_12\ Q\hbox{:}\ 5$ 

The line  $\frac{x}{a} + \frac{y}{b} = 1$ , where a and b are positive constants, intersects the x- and y-axes at the points A and B respectively. The mid-point of AB lies on the line 2x + y = 10 and the distance AB = 10. Find the values of a and b.



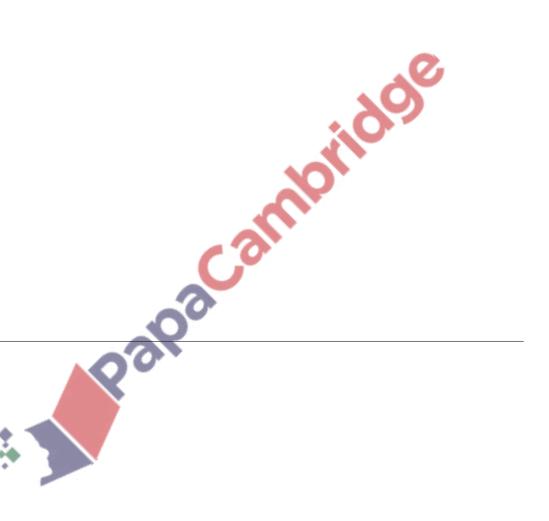
121. 9709 w16 qp 13 Q: 1

Find the set of values of k for which the curve  $y = kx^2 - 3x$  and the line y = x - k do not meet. [3]








122. 9709_w16_qp_13 Q: 6

Three points, A, B and C, are such that B is the mid-point of AC. The coordinates of A are (2, m) and the coordinates of B are (n, -6), where m and n are constants.

(i) Find the coordinates of C in terms of m and n. [2]

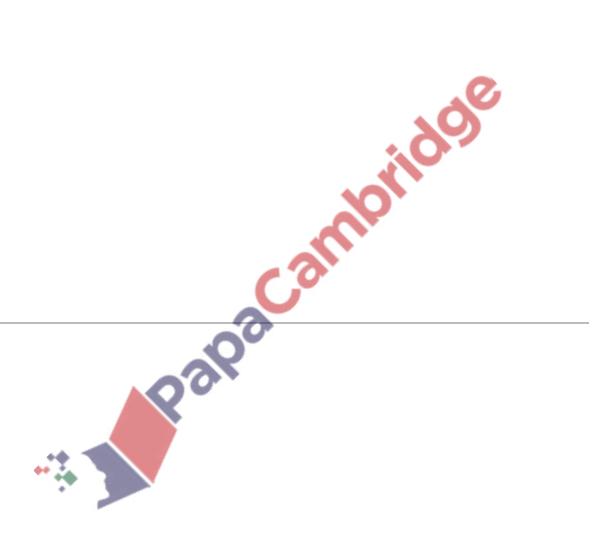
The line y = x + 1 passes through C and is perpendicular to AB.

(ii) Find the values of m and n. [5]








123. 9709_s15_qp_11 Q: 6

The line with gradient -2 passing through the point P(3t, 2t) intersects the x-axis at A and the y-axis at B.

(i) Find the area of triangle AOB in terms of t. [3]

The line through P perpendicular to AB intersects the x-axis at C.

(ii) Show that the mid-point of PC lies on the line y = x. [4]







124. 9709 s15 qp 12 Q: 6

A tourist attraction in a city centre is a big vertical wheel on which passengers can ride. The wheel turns in such a way that the height, h m, of a passenger above the ground is given by the formula  $h = 60(1 - \cos kt)$ . In this formula, k is a constant, t is the time in minutes that has elapsed since the passenger started the ride at ground level and kt is measured in radians.

One complete revolution of the wheel takes 30 minutes.

(ii) Show that 
$$k = \frac{1}{15}\pi$$
. [2]

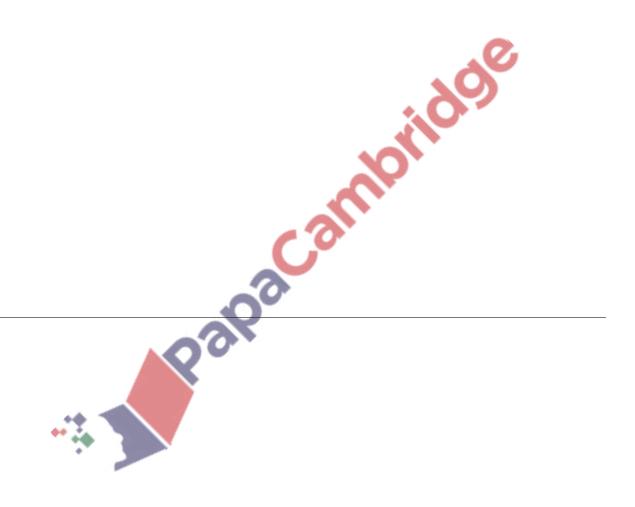


125. 9709 s15 qp 13 Q: 7

The point A has coordinates (p, 1) and the point B has coordinates (9, 3p + 1), where p is a constant.

- (i) For the case where the distance AB is 13 units, find the possible values of p. [3]
- (ii) For the case in which the line with equation 2x + 3y = 9 is perpendicular to AB, find the value of p.






126. 9709_w15_qp_11 Q: 6

A curve has equation  $y = x^2 - x + 3$  and a line has equation y = 3x + a, where a is a constant.

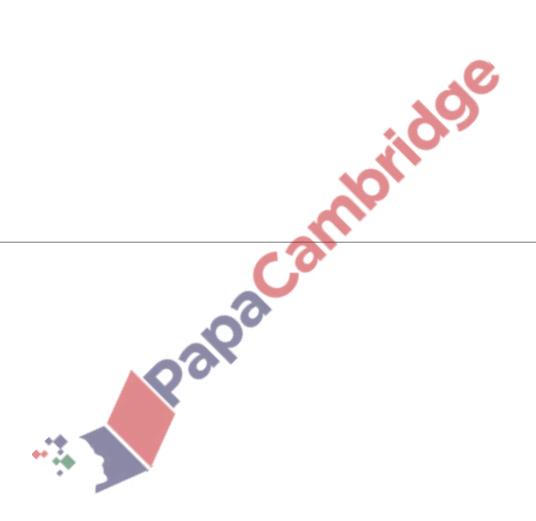
- (i) Show that the x-coordinates of the points of intersection of the line and the curve are given by the equation  $x^2 4x + (3 a) = 0$ . [1]
- (ii) For the case where the line intersects the curve at two points, it is given that the x-coordinate of one of the points of intersection is -1. Find the x-coordinate of the other point of intersection.

(iii) For the case where the line is a tangent to the curve at a point P, find the value of a and the coordinates of P.







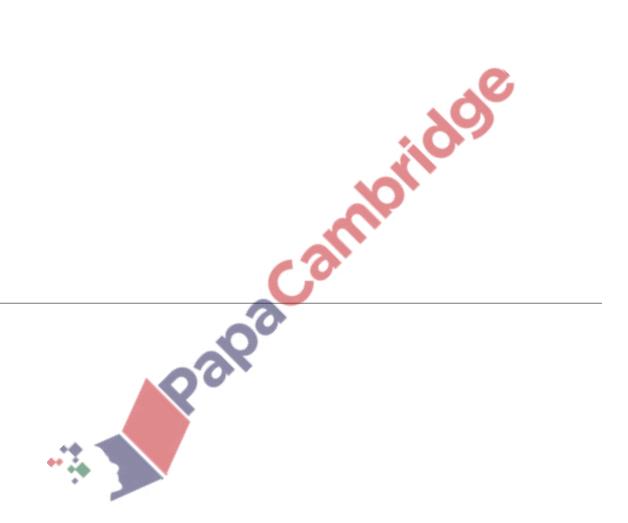

 $127.\ 9709_w15_qp_12\ Q:\ 6$ 

Points A, B and C have coordinates A(-3, 7), B(5, 1) and C(-1, k), where k is a constant.

(i) Given that AB = BC, calculate the possible values of k. [3]

The perpendicular bisector of AB intersects the x-axis at D.

(ii) Calculate the coordinates of D. [5]








128. 9709_w15_qp_13 Q: 1

A line has equation y = 2x - 7 and a curve has equation  $y = x^2 - 4x + c$ , where c is a constant. Find the set of possible values of c for which the line does not intersect the curve. [3]



